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Abstract. We present a new point scalar multiplication algorithm on classi-

cal Weierstrass elliptic curves over fields of characteristic greater than 3. Using

Meloni’s formula that efficiently adds two points with the same Z-coordinates,
we develop an algorithm computing [k]P only with these point additions. We

combine Meloni’s addition with a modified version of a Montgomery ladder, a

well-established side-channel resistant method for scalar multiplication. Our
aim is to construct an algorithm that is resistant, by construction, against Sim-

ple Power Analysis (SPA) and Fault Analysis (FA) while still being efficient.

We present four versions of our algorithm with various speed-ups depending
on the available memory of the device. Finally, we compare our method with

state-of-the-art algorithms at the same level of side-channel resistance.

1. Introduction

Smart cards and more generally low powered computational devices, need ef-
ficient algorithms which must be resistant to side-channel analysis. Side-channel
attacks use information observed during the execution of the algorithm to deter-
mine the secret key. The two main classes of side-channel attacks are: simple
side-channel attacks, like Simple Power Analysis (SPA), which analyze the trace of
a single execution of the algorithm, and differential side-channel attacks, like Dif-
ferential Power Analysis (DPA), which compare the traces of multiple executions.
Another kind of implementation attacks are Fault Attacks (FA). Initially reported
on RSA, they were quite naturally extended to other group based crytosystems.
Biel, Meyer and Mller [BMM00] showed how to exploit errors in elliptic curve
scalar multiplications. Their results were extended by Ciet and Joye [CJ05].

Elliptic curve (EC) cryptosystems are of great interest because they require less
memory and hardware ressources than other cryptographic standards like RSA for
a given security level. They are considered particularly suitable for implementation
on smart cards and mobile devices. Because of the physical characteristics of these
devices and their use in potentially hostile environments, they are particularly sen-
sitive to side-channel attacks. The most important operation in EC cryptosystems
is the point scalar multiplication [k]P . Its computational cost is decisive in the
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overall efficiency of the EC algorithms but securing it can be very time consum-
ing. Numerous articles in the literature deal with securing the scalar multiplication
against different side-channel attacks.

We propose a new scalar multiplication algorithm that overcomes both the
efficiency and the side-channel resistance problems. We use Meloni’s addition for-
mula that is very efficient but requires the two input points to have the same
Z-coordinate. Modifying the Montgomery ladder algorithm, we obtain an algo-
rithm that uses only Meloni’s addition and that is resistant against SPA and FA
like Montgomery’s algorithm.

This paper is organized as follows: we first briefly review elliptic curve arith-
metic in Section 2. Then Section 3 presents classical side-channel resistant scalar
multiplication algorithms on elliptic curves. In Section 4 we introduce our faster
multiplication algorithms. Finally, Section 5 analyzes the security against side-
channel attacks of our algorithm and compares its efficiency with other methods at
the same level of side-channel resistance.

2. Elliptic curve arithmetic

We consider elliptic curves defined over K = Fp, with p > 3, a finite field of p
elements. An elliptic curve E over a field K is defined by an equation of the form:

E/K : y2 = x3 + ax+ b

where a, b ∈ K satisfy ∆ = 4a3+27b2 6= 0 mod p. The set of all the points on E with
the point at infinity, denoted∞, is equipped with an additive group structure. The
coordinate system chosen for a point addition or doubling is very important in terms
of efficiency. One can look at [BL07] for a summary of addition and doubling’s
complexity in different coordinate systems. In practice, the Jacobian coordinates
are often used because they offer a great compromise between computational costs
and memory usage. A point P in Jacobian coordinates is noted P = (X,Y, Z)
and represents the affine point ( X

Z2 ,
Y
Z3 ). Classical addition and doubling formulas

[BL07] are as follows:
Point doubling. Let P = (X,Y, Z), P3 = [2]P = (X3, Y3, Z3) and suppose

P 6= −P .

A = X2, B = Y 2, C = B2, D = Z2, E = 2((X +B)2 −A− C),

F = 3A+ aD2, G = F 2 − 2E


X3 = G,

Y3 = F (E −G)− 8C,

Z3 = (Y + Z)2 −B −D.
A point doubling can be done with 1 multiplications and 8 squarings in the field
K, noted 1M + 8S.

Point addition. Let P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2) both unequal to ∞
and P2 6= ±P1. Let P3 = P1 + P2 = (X3, Y3, Z3).

A = Z2
1 , B = Z2

2 , C = X1B, D = X2A, E = Y1Z2B, F = Y2Z1A,

G = D − C, H = (2G)2, I = GH, J = 2(F − E), K = CH



FASTER SIDE-CHANNEL RESISTANT ELLIPTIC CURVE SCALAR MULTIPLICATION 3


X3 = J2 − I − 2K,

Y3 = J(K −X3)− 2EI,

Z3 = ((Z1 + Z2)2 −A−B)G.

A general point addition costs 11M + 5S.
We use in our point scalar multiplication algorithm the simplified addition

formula found by Meloni [Mel07]. If P1 = (X1, Y1, Z) and P2 = (X2, Y2, Z) are two
points in Jacobian coordinates with the same Z-coordinate, the following formula
can be applied:

Simplified point addition. Let P1 = (X1, Y1, Z), P2 = (X2, Y2, Z) both unequal
to ∞ and P2 6= ±P1. Let P3 = P1 + P2 = (X3, Y3, Z3).

A = (X2 −X1)2, B = X1A, C = X2A, D = (Y2 − Y1)2,
X3 = D −B − C,
Y3 = (Y2 − Y1)(B −X3)− Y1(C −B),

Z3 = Z(X2 −X1).

The point addition in this special case only costs 5M+2S. It is even faster than the
general point doubling in Jacobian coordinates. In this state, the algorithm is not
very useful because it is unlikely for both P1 and P2 to have the same Z-coordinate.
Meloni noticed that, while computing the addition, one can easily modify the entry
point P1 so that P1 and P1 + P2 have the same Z-coordinate at the end of the
addition. He calls this algorithm

NewAdd(P1, P2)→ (P̃1, P1 + P2).

NewAdd. Let P1 = (X1, Y1, Z), P2 = (X2, Y2, Z) both unequal to ∞ and P2 6=
±P1. Let P3 = P1 + P2 = (X3, Y3, Z3).

A = (X2 −X1)2, B = X1A, C = X2A, D = (Y2 − Y1)2, E = Y1(C −B),
X3 = D −B − C,
Y3 = (Y2 − Y1)(B −X3)− E,
Z3 = Z(X2 −X1),

and 
X1 = B,

Y1 = E,

Z = Z3.

Meloni also shows that the classical doubling can be modified so that it returns
P̃ and [2]P with same Z-coordinate without adding computational cost.

3. Classical side-channel resistant scalar multiplication algorithms

A standard method for performing the scalar multiplication [k]P is the left-to-
right double-and-add algorithm (Algorithm 1). It is the elliptic curve equivalent
of the square-and-multiply for exponentiation in finite fields. Let k be a positive
integer and P a point on an elliptic curve. Let

k = kn−12n−1 + · · ·+ k121 + k020

be the binary representation of k where kn−1 = 1. We can compute [k]P as follows
with the left-to-right double-and-add algorithm.
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Algorithm 1: Left-to-right double-and-add

input : P ∈ E and k = (kn−1 . . . k1k0)2

output: [k]P ∈ E
1 Q← P ;

2 for i← n− 2 to 0 do
3 Q← [2]P ;

4 if ki = 1 then
5 Q← Q+ P ;

6 return Q

With standard addition and doubling formulas, an attacker can detect bit in-
formation on the scalar k by SPA [Cor99]. The power consumption traces of an
addition and a doubling are different enough to be distinguished. Coron proposed
in 1999 a dummy addition method [Cor99], also known as double-and-always-add,
which represents the simplest algorithm of this type (Algorithm 2).

Algorithm 2: Double-and-always-add

input : P ∈ E and k = (kn−1 . . . k1k0)2

output: [k]P ∈ E
1 Q0 ← P ;

2 for i← n− 2 to 0 do
3 Q0 ← [2]Q0;

4 Q1 ← Q0 + P ;

5 Q0 ← Qki /* Qki equals either Q0 or Q1 */;

6 return Q0

Chevallier-Mames et al. [CMCJ04] proposed the idea of side-channel atom-
icity. Each elliptic curve operation is implemented as the repetition of blocks of
instructions that look alike in the power trace. The code of the scalar multiplication
algorithm is then unrolled such that it appears as a repetition of the same atomic
block. The sequence of blocks does not depend on the scalar used and their algo-
rithm is then secure against SPA. A doubling in Jacobian coordinates is computed
using 10 atomic blocks and 16 blocks for an addition, each atomic block costing
1M . However their construction uses dummy operations and can then be sensitive
to fault attacks.

Another approach to SPA resistance is using indistinguishable addition and
doubling algorithms in the scalar multiplication [CJ01, BDJ04]. Jacobi form,
Hesse form or Edwards form elliptic curves allow the same algorithm for both addi-
tions and doublings. However, we only consider in this paper standardized curves
recommanded by specifications [X9.98, NIS00, SEC00]. Brier et al. [BDJ04]
proposed a unified addition and doubling formula for generic Weierstraß curves
that cost 16M + 3S for Jacobian coordinates. One of the benefits of this type of
countermeasure is that there is no use of dummy operations, hence fault analysis
techniques cannot be used.
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We can also mention the NAF-based multiplication algorithms [JY00, OT04].
The non-adjacent (NAF) form is a unique signed digit representation of an integer
using the digits {−1, 0, 1}, such that no two adjacent digits are both non-zeros.
NAF algorithms take advantage of the fact that negating a point on an elliptic
curve simply requires a change in the sign of the Y -coordinate, substractions are
cheap operations. However classical NAF multiplications can be sensitive to sign
change fault attacks [BOS06]. Recently, the authors of [GLS09] and [LG09]
pointed out the use of Meloni’s formulas for the purpose of precomputations in
NAF-based multiplication algorithms.

Finally, we consider the Montgomery ladder algorithm (Algorithm 3) which
was originally proposed in [Mon87] only for Montgomery-type elliptic curves. In
[BJ02], Brier and Joye generalized the algorithm to any elliptic curves in short
Weierstraß equations. Montgomery’s original idea was based on the fact that the
sum of two points whose difference is a known point can be computed without the
y-coordinate of the two points. His algorithm is very efficient on a certain family of
elliptic curves, called Montgomery’s curves. In this case, the differential addition
costs 4M + 2S and the doubling 2M + 2S + 1D where 1D is a multiplication
by a constant. Brier and Joye’s adaptation requires 9M + 2S for an addition
and 6M + 3S for a doubling. The complexity of this general algorithm is then
n(15M + 5S) + 3M +S+ I for a n-bit scalar, where I is a modular inversion in the
field Fp and 3M + S + I is the cost to recover the Y -coordinate at the end.

We can also note Izu and Takagi work [IT02] that, at the same moment as Brier
and Joye, also generalized Montgomery’s ladder. They obtained slightly better
results with a complexity of n(13M + 4S) + 11M + 2S for a n-bit scalar.

Algorithm 3: Montgomery ladder

input : P ∈ E and k = (kn−1 . . . k1k0)2

output: [k]P ∈ E
1 P0 ← P ;

2 P1 ← [2]P ;

3 for i← n− 2 to 0 do
4 Pk̄i

← P0 + P1;

5 Pki ← [2]Pki ;

6 return P0

Since the Montgomery ladder is, by construction, an interesting algorithm for
side-channel resistance (see Section 5) we use it as a basis for our multiplication.
However, we can’t use classical doublings with Meloni’s addition formula in a point
scalar multiplication algorithm as, for each bit, we would need to compute [2]Pki

(Algorithm 3, Line 5) so that it has the same Z-coordinate as Pk̄i
= P0 + P1 (Al-

gorithm 3, Line 4). We would lose the benefit of the simplified addition. Meloni
proposed a Fibonacci-and-add algorithm [Mel07] that performed scalar multipli-
cation only using his addition formula. The gain of the addition is counteracted by
a representation of the scalar k that is much larger than its binary representation.
By modifying the Montgomery ladder structure, we are able to only use Meloni’s
additions while using the binary representation of k.
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4. Our side-channel resistant multiplication

Let R, a n-bit integer, be the order of the elliptic curve point P , and let
k < R−1 an integer. We use in our approach a modified version of the Montgomery
ladder (Algorithm 4) with Meloni’s addition to construct a multiplication algorithm
resistant to both SPA and FA (see Section 5). However, as previously stated,
Meloni’s formula needs as input two points with the same Z-coordinate. We both
describe a naive method and our proposed solution to deal with this issue.

Algorithm 4: Montgomery ladder with additions

input : P ∈ E and k = (kn−1 . . . k1k0)2

output: [k]P ∈ E
1 P1 ← P ;

2 P2 ← [2]P ;

3 for i← n− 2 to 0 do
4 P1 ← P1 + P2;

5 P2 ← P1 + (−1)k̄iP ;

6 return P2

4.1. A naive approach to the Z-coordinate problem. In order to use
simplified additions, we must have ZP2

= ZP1
at the end of each round in order

to add them in the next. Fortunately, this is a property of the NewAdd algorithm.
Also, the point ±P must have the same Z-coordinate as P1 before computing
P2 ← P1 + (−1)k̄iP (Algorithm 4, Line 5). We could recalculate an updated P at
each round with ZP = ZP1

but we would need to:

(1) Store the point P = (X,Y, Z) during the whole scalar multiplication.
(2) Compute and store the modular inversion Z−1 at the beginning of the

algorithm.
(3) Compute, at each round, if P = (X,Y, Z) and P1 = (X1, Y1, Z1), the

integer λ = Z1Z
−1. Finally, we would have P ′ = ±(λX, λY, λZ) for a

total of 4M .

For a n-bit scalar k, the cost of a multiplication [k]P will be n(2(5M + 2S) +
4M + S) + I = n(14M + 5S) + I where I is the cost of an inversion in Fp.

4.2. Updating P ’s coordinates more efficiently. We propose to recom-
pute the point P at each round within a modified addition algorithm (Algorithm
5), with an appropriate Z-coordinate. We call

NewAddSub(P1, P2)→ (P̃1, P1 + P2, P1 − P2) with ZP̃1
= ZP1+P2 = ZP1−P2 .

In NewAddSub we take the simplified addition and we add the subtraction for
additional cost 1M + 1S in time. Finally our NewAddSub costs 6M + 3S where
NewAdd costs 5M + 2S.

We can now write a point scalar multiplication algorithm called FullMult (Al-
gorithm 6). We note Q [0], Q [1] and Q [2] respectively the outputs of NewAddSub

P̃1, P1 + P2 and P1 − P2 (Algorithm 6 lines 4 and 7). At each round, line 6, the
algorithm will get an updated point P with the correct Z-coordinate thanks to the
added substraction in NewAddSub. Also, after the second NewAddSub, we always
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Algorithm 5: NewAddSub

input : P1 = (X1, Y1, Z) and P2 = (X2, Y2, Z)

output: (P̃1, P1 + P2, P1 − P2)

1 R1 ← X2 −X1;

2 Z ← Z ·R1 /* Final Z */;

3 R1 ← R2
1;

4 X1 ← X1 ·R1 /* XP̃1
*/;

5 X2 ← X2 ·R1;

6 R1 ← Y2 − Y1;

7 R2 ← R2
1;

8 R2 ← R2 −X1 −X2 /* XP1+P2 */;

9 R3 ← X1 −R2;

10 R3 ← R1 ·R3;

11 Y2 ← −Y2 − Y1;

12 R4 ← Y 2
2 ;

13 R4 ← R4 −X1 −X2 /* XP1−P2 */;

14 X2 ← X2 −X1;

15 R1 ← Y1 ·X2 /* YP̃1
*/;

16 X2 ← R3 −R1 /* YP1+P2 */;

17 Y1 ← X1 −R4;

18 Y1 ← Y1 · Y2;

19 Y2 ← Y1 −R1 /* YP1−P2
*/;

20 return P̃1 = (X1, R1, Z), P1 + P2 = (R2, X2, Z), P1 − P2 = (R4, Y2, Z)

have: if P1 = [r]P , then P2 = [r − 1]P . Hence, in the next round, line 6, we again
get an updated P = P1 − P2.

Algorithm 6: FullMult

input : P ∈ E and k = (kn−1 . . . k1k0)2

output: [k]P ∈ E
1 P1 ← [2]P ;

2 P2 ← P ;

// We assume ZP1 = ZP2

3 for i← n− 2 to 0 do
4 Q← NewAddSub(P1, P2);

5 P1 ← Q [1] /* P1 ← (P1 + P2) */;

6 P2 ← Q [2] /* P2 ← (P1 − P2) = P */;

7 Q← NewAddSub(P1, (−1)k̄iP2);

8 P1 ← Q [ki] /* P1 ← P̃1 or P1 ← P1 + P2 */;

9 P2 ← Q
[
k̄i
]

/* P2 ← P̃1 or P2 ← P1 + P2 */;

10 return P2
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This basic FullMult only uses the NewAddSub algorithm, for a n-bit scalar the
complexity is n(12M + 6S). We note that the second NewAddSub (Algorithm 6 line
7) is only a simple NewAdd. If one has enough space to code these two algorithms,
a modified FullMult’ can run in:

n(NewAddSub + NewAdd) = n((6M + 3S) + (5M + 2S)) = n(11M + 5S).

We can further improve the performance of our algorithm if we note that within
the loop of the scalar multiplication, the Z-coordinate of the points is not used in
the NewAddSub or in the NewAdd for computing either the X or Y coordinates. We
can then reduce our FullMult algorithm into a LightMult version where we don’t
take care of the Z inside the loop but compute the final Z in the last round for
minimal computational cost. We easily modify our NewAddSub into a LightAddSub

such that

LightAddSub(P1, P2)→ (P̃1, P1 + P2, P1 − P2) with ZP̃1
= ZP1+P2 = ZP1−P2 ,

where LightAddSub is the same algorithm as NewAddSub but without computing
the Z. Then LightAddSub costs 5M + 3S. The multiplication algorithm has to be
slightly modified by computing the last round of the loop on ki separately in order
to get the right Z-coordinate. We call this algorithm LightMult (Algorithm 7).

If one has enough space, we can use the same trick as in FullMult algorithm
replacing the LightAddSub in Algorithm 7, lines 8 and 20, with a version of the
original NewAdd without computing the Z-coordinate called LightAdd. We finally
obtain a modified LightMult’ that runs in:

n(LightAddSub + LightAdd) = n((5M + 3S) + (4M + 2S)) = n(9M + 5S).

5. Resistance against side-channel attacks

Side-channel attacks are based on the observation that side-channel leakage
(power consumption, electromagnetic emissions, etc.) depends on the instruction
being executed, or on the data being handled.

Standard double-and-add algorithms, like Algorithm 1, contain conditional
branching where different instructions are executed depending on the bit values
of the scalar. The two branches then behave differently and this translates to a
change of side-channel information being leaked by the device. With simple power
analysis-like attacks, an attacker can easily distinguish bit values. Therefore, al-
gorithms with dummy operations, like double-and-always-add (Algorithm 2), were
proposed. The conditional branching now contains the same operations by adding
dummy operations to equalise the side-channel leakage. The standard Montgomery
ladder is highly regular as it computes, for each bit regardless of its value, a doubling
and an addition.

Our multiplication algorithms are based on an adapted Montgomery ladder.
Our four proposed algorithms each compute the same sequence of instructions re-
gardless of the value the bit of the scalar takes. The computations are a fixed
pattern unrelated to the bit information of k. Thus, simple power analysis-like
attacks are defeated. The side-channel information also becomes a fixed pattern.
The Montgomery ladder is secure against SPA and its security is independant of
the formulas used within the ladder.

Differential side-channel analysis estimates the value of an intermediate result
of the algorithm using statistical tools. DPA-like attacks need a so-called leakage
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Algorithm 7: LightMult

input : P ∈ E and k = (kn−1 . . . k1k0)2

output: [k]P ∈ E
1 P1 ← [2]P ;

2 P2 ← P ;

// We assume ZP1
= ZP2

3 Psave ← P ;

4 for i← n− 2 to 1 do
5 Q← LightAddSub(P1, P2);

6 P1 ← Q [1] /* P1 ← (P1 + P2) */;

7 P2 ← Q [2] /* P2 ← (P1 − P2) = P */;

8 Q← LightAddSub(P1, (−1)k̄iP2);

9 P1 ← Q [ki] /* P1 ← P̃1 or P1 ← P1 + P2 */;

10 P2 ← Q
[
k̄i
]

/* P2 ← P̃1 or P2 ← P1 + P2 */;

// Last round

11 Q← LightAddSub(P1, P2);

12 P1 ← Q [1] /* P1 ← (P1 + P2) */;

13 P2 ← Q [2] /* P2 ← (P1 − P2) = P */;

// Compute ZP

14 Zfinal ← XP2 ∗ YPsave ;

15 Zfinal ← (Zfinal)
−1;

16 Zfinal ← Zfinal ∗ YP2 ;

17 Zfinal ← Zfinal ∗XPsave
;

18 Zfinal ← Zfinal ∗ ZPsave
;

19 Zfinal ← (Zfinal ∗ (XP2
−XP1

));

20 Q← LightAddSub(P1, (−1)k̄iP2);

21 P1 ← Q [ki] /* P1 ← P̃1 or P1 ← P1 + P2 */;

22 P2 ← Q
[
k̄i
]

/* P2 ← P̃1 or P2 ← P1 + P2 */;

23 P2 ← [XP2
, YP2

, Zfinal];

24 return P2

function that computes for each input message the hypothetical power consump-
tion of a targeted intermediate value that also depends on the value of the secret.
The guessed consumption is then compared to the actual power consumption trace
of the device in order to find a statistical relation. SPA-resistance does not imply
DPA-resistance of an algorithm. However, our proposed SPA-resistant algorithms
are easy to enhance. Countermeasures against DPA aim to make impossible the
guessing of the leakage function output by using random numbers. A lot of ran-
domization methods have been proposed for elliptic curve cryptosystems.

Coron in [Cor99] proposed representing elliptic curve points using random-
ized projective coordinates. Let P = (x, y, z) be a point in Jacobian projective
coordinates. Then for all non-zero integers r, (r2x, r3y, rz) represents the same
point. Only knowing the point P , the bit sequence of the randomized point is so



10 ALEXANDRE VENELLI AND FRANÇOIS DASSANCE

different to P that statistical tools of DPA can’t find relationships. The additional
computational cost is 4M + 1S at the beginning of the scalar multiplication.

Joye and Timen [JT01] proposed the use of randomized isomorphisms between
elliptic curves. A point P = (x, y) is randomized into (r−2x, r−3y, 1) in Jacobian
coordinates for an non-zero integer r, with elliptic curve parameters a′ = r−4a
and b′ = r−6b. The advantage of this method is that the Z-coordinate of the
randomized point is 1. Hence, optimizations in the elliptic curve algorithms can
be applied. However, Joye-Tymen randomization requires more additional storage
than Coron’s. The intial transformation of the point requires 4M + 2S plus the
storage of two field elements.

We can also briefly mention other randomization techniques against DPA.
Coron [Cor99] introduced the randomized exponent method, as well as the ran-
domized base point. Clavier and Joye [CJ01] proposed splitting the scalar k into
r and k− r, with r a random integer. One then computes [k]P as [k − r]P + [r]P .

Fault attacks are based on the fact that a fault during a cryptographic compu-
tation leads to a faulty result. If the device does not detect the fault and does not
prevent the output, an attacker can exploit the results. Using knowledge of faulty
results, correct ones and the precise place of induced faults, an attacker can recover
bits of a secret. Numerous mechanisms for fault injection have been discovered and
researched [HCN+04].

Double-and-always-add algorithms are obviously susceptible to fault attacks.
As previously seen, the algorithm runs in constant time, the same operations are
computed regardless of bit values. Hence, an attacker can easily detect the opera-
tions in Algorithm 2, lines 3 and 4. If, for example, ki equals 0, and the adversary
injects a fault in the computation of Q1. This intermediate result is a dummy
operation and the final result of the multiplication has not changed. Therefore, the
attacker knowns that ki = 0 because his fault had no effect on the final result. By
repeating this technique, he can recover the secret scalar. This type of fault injec-
tion is also called computational safe-error attack. However, for the Montgomery
ladder, the situation is different as every intermediate result is used to compute the
final result. Hence, if the attacker induces a fault the final result will inevitably
be corrupted. Joye and Yen [JY02] proposed a slight modification to the Mont-
gomery ladder in order to make it resistant to M safe-error attacks, an attack that
implies stronger assumptions in the attacker’s capabilities. Recently, Fouque et
al. [FLRV08] presented the twist curve attacks: a powerful fault attack against a
Montgomery ladder implementation using no y-coordinate. However, for our case,
the y-coordinate is used in all our propositions.

In order to thwart many attacks, a good set of countermeasures would be:
random splitting of the scalar [CJ01] and point verification [BMM00] that checks
if a point lies on a curve or not. Our proposed algorithms combined with this set
of countermeasures are resistant to known attacks.

6. Conclusion

We presented in this paper a new scalar multiplication algorithm for elliptic
curves which is as resistant as the Montgomery ladder and faster than its adaptation
for generic curves. Table 1 compares the efficiency of our algorithms with the generic
Montgomery ladder algorithms. We can attain a complexity of 9M + 5S per bit
of scalar with our LightMult’ algorithm on any elliptic curve over a prime field
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Table 1. Summary of scalar multiplication algorithms

Complexity (per bit of scalar)
Generic Montgomery ladder [BJ02] 15M + 5S

Improved Izu-Takagi [IT02] 13M + 4S
FullMult 12M + 6S
FullMult’ 11M + 5S
LightMult 10M + 6S
LightMult’ 9M + 5S

whereas, Izu-Takagi’s generic Montgomery ladder costs 13M + 4S. We have also
shown the side-channel resistance of Montgomery, type algorithms against simple
side-channel attacks and fault attacks. Hence, combining one of our algorithm
propositions with a DPA randomization technique will provide an efficient scalar
multiplication resistant against main side-channel threats.
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